The function ode
provides solvers for systems of ordinary differential equations of the
type:
$$ \frac{dy}{dt} = f(t,y), \quad y(t_0)=y_0 $$
where y is the vector of
state variables. Two solvers are available: the simpler and faster Euler
scheme1
or the more accurate 4-th order Runge-Kutta method2. Although many
packages already exist to solve ordinary differential equations in R3, they
usually represent the function f either with an R
function
or with characters
. While the
representation via R functions
is usually more efficient,
the symbolic representation is easier to adopt for beginners and more
flexible for advanced users to handle systems that might have been
generated via symbolic programming. The function ode
supports both the representations and uses hashed
environments
to improve symbolic evaluations.
The vector-valued function f representing the system can be
specified as a vector of characters
, or a
function
returning a numeric vector, giving the values of
the derivatives at time t. The
initial conditions are set with the argument var
and the
time variable can be specified with timevar
.
$$ \frac{dx}{dt}=x, \quad x_0 = 1 $$
f <- "x"
var <- c(x=1)
times <- seq(0, 2*pi, by=0.001)
x <- ode(f = f, var = var, times = times)
plot(times, x, type = "l")
$$ \frac{dx}{dt}=\cos(t), \quad x_0 = 0 $$
f <- "cos(t)"
var <- c(x=0)
times <- seq(0, 2*pi, by=0.001)
x <- ode(f = f, var = var, times = times, timevar = "t")
plot(times, x, type = "l")
$$ \frac{d}{dt} \begin{bmatrix} x\\ y \end{bmatrix}= \begin{bmatrix} x\\ x(1+\cos(10t)) \end{bmatrix}, \quad \begin{bmatrix} x_0\\y_0 \end{bmatrix}= \begin{bmatrix} 1\\1 \end{bmatrix} $$
f <- c("x", "x*(1+cos(10*t))")
var <- c(x=1, y=1)
times <- seq(0, 2*pi, by=0.001)
x <- ode(f = f, var = var, times = times, timevar = "t")
matplot(times, x, type = "l", lty = 1, col = 1:2)
$$ \frac{d}{dt} \begin{bmatrix} x\\ y \end{bmatrix}= \begin{bmatrix} x\\ y \end{bmatrix}, \quad \begin{bmatrix} x_0\\y_0 \end{bmatrix}= \begin{bmatrix} 1\\2 \end{bmatrix} $$
f <- function(x, y) c(x, y)
var <- c(x=1, y=2)
times <- seq(0, 2*pi, by=0.001)
x <- ode(f = f, var = var, times = times)
matplot(times, x, type = "l", lty = 1, col = 1:2)
$$ \frac{d}{dt} \begin{bmatrix} x\\ y\\ z \end{bmatrix}= \begin{bmatrix} x\\ y\\ y*(1+cos(10*t)) \end{bmatrix}, \quad \begin{bmatrix} x_0\\y_0\\z_0 \end{bmatrix}= \begin{bmatrix} 1\\2\\2 \end{bmatrix} $$
f <- function(x, t) c(x[1], x[2], x[2]*(1+cos(10*t)))
var <- c(1,2,2)
times <- seq(0, 2*pi, by=0.001)
x <- ode(f = f, var = var, times = times, timevar = "t")
matplot(times, x, type = "l", lty = 1, col = 1:3)
Guidotti E (2022). “calculus: High-Dimensional Numerical and Symbolic Calculus in R.” Journal of Statistical Software, 104(5), 1-37. doi:10.18637/jss.v104.i05
A BibTeX entry for LaTeX users is